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Abstract. With both longitudinal optical (L0) and surface optical (S0) modes included, the
influence of electron-phonon interactions on the quantum confined Stark effect in quantum
wells is investigated by means of the variational technique. For an infinite GaAs-GaAlAs
quantum well with a shatlow donor located at its centre and subjected to an external electric
field, the energy shifts of a conduction electron are calculated approximately. It is found that
the presence of an ionized impurity decreases the energy shift. The Lo mode and 50 mode
effectwill give significant corrections to the Stark energy shift individually and theirinfluences
on the shift are just opposed.

1. Introduction

Recently, the study of the electronic and optical properties of the quantum-well (Qw)
structure in the presence of an electric field has atiracted a great deal of interest [1-7].

It is well known that, for ow and other confined structures subjected to an electric
field perpendicular to the well layers, the quantum confined Stark effect (QCsg) det-
ermines the behaviour of the electron absorption by shifting the optical absorption
peaks. The electron absorptive effect has already been applied to make small, high-
speed optical modulators, and optical switching and signal processing devices [8]. So,
studies of these areas are important from both a fundamental and a practical point of
view.,

Most theoretical work has been confined to the calculations of the ground state in
which the possibility of tunnelling out of the well was neglected and the infinite-weil
approximation was employed. In principle, the linear combinations of two dependent
Airy functions are an exact solution of the eigenstates in an infinite QW under a constant
electric field [3]. However, these solutions are too complicated to use in a real problem.
So sometimes, other approximation methods based on the Green function [9], per-
turbational treatment [10] and variational technique [11] are used.
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In the calculations for studying QCSE in the infinite-well approximation, the vari-
ational approach not only has the advantage of providing analytical expressions for the
eigenstate energies and the field-dependent trial wavefunctions but gives numerical
results with reasonable accuracy. It was found that its results agreed very well with that
of other methods over a wide range of moderate electric fields {12].

On the other hand, with the development of the epitaxial growth technique and the
applications of doped superlattice structures, in which electronic transport properties
were shown to be significant, a lot of theoretical papers have discussed the binding
energy and wavefunction of a hydrogenic donor in polar crystai slabs and semiconductor
Qw [13-16]. Recently, the presence of ionized impurities in the Qw region has been
suggested as one possible mechanism to explain the strong broadening of the excitonic
peaks in the electro-absorption spectra with fields [17]. It has thus become more impor-
tant to understand the role of impurities in semiconductor Qw and other confined
structures.

The early theoretical studies concluded that the electron-optical phonon coupling
would play an important role in determining the properties of a polaron in Qw. Both in
3D and in 2D systems, the virtual coupling of a quasi-free electron with bulk longitudinal
optical (£0) phonons has been investigated [18-20). However, to the best of our know!-
edge, only more recently was the electron~LO phonon interaction taken into account in
the calculation of Stark energy shifts in an infinite Qw [21], in which the Lo modes effect
was approximately described by the operators in the bulk not in the slab.

The first deduction of the Hamiltonian operators of the Fréhlich polaron in a polar
crystal slab with both the electron-Lo phonon and the electron—surface optical (s0)
phonon interaction included was made by Licari and Evrard [22]. In the zero-tem-
perature limit, we and our collaborators [16] investigated the influence of the SO modes
effect and concluded that, for a thin polar crystal slab, the electron—so phonon inter-
action would make an obvious contribution to the optical properties of a bound polaron.

In this paper, we report a study of the effect of an external electric field on the
electronic bound states associated with an infinite quantum well in which there is a
shallow donor located at its centre (on-centre impurity). Taking GaAs—GaAlAs as an
example, we calculate the energy shifts by means of the variational technique. With the
consideration of the electron interaction with both Lo and so modes, in particular, the
electron-phonon effect on QCSE is discussed in detail

It is found that the presence of ionized impurities will decrease the energy shift and
for such a correction the energy change in the xy plane will play an important roie.
The effects of LO and 50 phonons will give significant corrections to the energy shifts
individually. But because of the opposite influence of so mode effect, the total correction
attributed mainly to LO mode effect is decreased.

2. The effective Hamiltonian

Let us consider an electron, with charge ¢ and effective mass m*, in a quantum well of
width L and in the presence of an external electric field F along the z direction, i.e.
perpendijcular to the well layers. The origin of distance is chosen at the centre of the
well, the space for | z| < L/2 is filled with polar crystal 1 (GaAs) and for |z| > L/2 with
polar crystal 2 (GaAlAs). The shallow doped impurity is located at the centre of the
well (z = 0). We assume that the effective-mass approximation is valid and electron
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tunnelling can be neglected. Therefore, in the infinite-well approximation, the Ham-
iltonian of this problem is written as

H=H,+ Hy + Hy,. (1)
The first term, the Hamiltonian of the shallow donor, is given by
H, = —(#*/2m*)3%/az? + h2K2[2m* — & [e 1 + |e|Fz (2)

where K, and p are the wavevector and the position vector of the electron in the xy
plane, respectively, and m* is the band mass of the electron. In (2) —€*/e,r is the
Coulomb potential to describe the interaction between the electron and the jonized
impurity, in which .. is the optical dielectric constant of crystals and » = (p* + 22,

In order to solve the energy eigenequation of H., we introduce the plane Coulomb
potential with the parameter A [23]. Then

B2 3% (RKE A\ | € (A 1)
=t [ —2 - ===+
He 2m* azz+(2m* exlp) Ex1 (p ¥ le|F2 3)

where the value of A will be determined by the perturbation theory.
The second term in (1) represents the phonon—field Hamiltonian

Hy=Hypo+ Hso (4a)

Hip= E ﬁwLOa;.p (k)am.p(k) (4b)
k.m,p

Hgo = 2 has, by (@)b,(0) (4c)
4.0

where a, , (k) (a,,,(k)) is the creation (annihilation) operator for the Lo phonon with
frequency w, o and kis the two-dimensional projection on the xy plane of the wavevector,
b} (q) (b,(¢)) is the corresponding operator for the s0 phonon with frequency ws, and
wavevector g. The phonon modes are specified by subscripts p and m. The parity index
p, taking the value + and —, refers to the mirror symmetry with respect to the plane
z = 0. The index m is the quantum number denoting the z component of the LO phonon
wavevector. For even parity (p takes +) m is odd, and for odd parity (p takes —) m is
even. The phonon frequencies can be expressed in terms of the transverse optical (TO)
phonon frequency wyo by

wio = (en/ex)00}o (Sa)

_ (o1 + £02) % (£ ~ Egp) €79 w2 (5b)
(€1 + Euz) T (Ear — £ap) ™ 10

w%:

where £, is the static dielectric constant.

In equation (1), Hiy = He. o + Heso. which represents the sum of the interaction
Hamiltonian operators respectively from LO and 50 modes. According to the results
deduced in [22], they are directly taken as

N . ik cos[(mm/L)z]
Heo= %[3 e (m=§ [k2 + (mx/L)z]m A, + (F)

i L
+ m}i N kflf_[gzz ng} 72 a,‘;,-(k)) + HC] (6a)
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Hego = > (s"'—inh(qL)) v e WR{C* e igp
q

T

X [G.(g.2)bi(q) + G_(q,z)bt(g)] + Hc} (6b)
where
4e? 1 1\]”
B*= .[%"— r‘zw,_o(a - e_m)] (7a)
C* = i[(2me? (Ao (g — £a1) ]2 (75)
cosh(gz)}/cosh(qL/2)

T (g + Ewz) = (Ex) — £u2) €79

(Exi F Buz) = (Ey — Ewz) gLy L4
((801 + 802) - (Eol — 802) e"'qL ) ([ZI < L/Z) (7c)
___ sinh(gz)/sinh(gL/2)
T (Eeep + Euz) + (E0y — Emz)e"?"-
(Exi + £w2) + (Exp — Exz) @79\
( (€01 + €} + (s — €02} €79 ) (Iz| < L/2). (7d)

In the above equations, A and V are the surface area and the volume of crystal 1
respectively. We take N as the well thickness in the unit of the lattice spacing constant
a,namely, Na = L. According to the Brillouin-zone boundary limitation mst/L < 7/2a,
the quantum number m of z component can be any integer within the range 1 < m < N/2.

For the sake of convenience, we first carry out the canonical transformations devel-
oped by Lee et al [24] to H(1) with

Uy, = exp(—i *E a5 () m (0K p — 1 2 b7 (g)b,(g)a - p) (8a)
m,p @p
and

U, = exp(kE (225 () fp () = i (R F 2 )]
Jm,p

[

+ 2165 (@)8,(0) ~ 5,(0)85 (@) (85)
"e

wheref, .. f 1 ».8,and g are the variational parameters determined by minimizing the
total energy subsequently. After some straightforward algebra, we directly get the
transformed Hamiltonian

¥ =U; " UTYHU, U, {9)

In the low-temperature limit, few phonons will be excited and then no real phonons
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are proposed to be present in the phonon ground state. Hence, in our study, we take
|0, 0 as the wavefunction of the phonon system and have

Q. p(K}[0,0) = b,(g)[0,0) = 0.
We set

2m* EpP

A? 8% (ﬁsz: Ae:)_,_fi(&_l)ﬂ |F:
2m* 4z* £l ;) TIelrE

o
sl cos[(mx/L)z)
+§ B( 2 [k2+(m3r/L)2]1/2fm'+(k)

m=1,3,...

Q = (0,0[%|0,0p = -

%2 sin](mx/L)z]

[k? + (mmx/L)?]Y? fm.—(k)) + HC]

+
m=2,4,...

: 1/2

(S o) + (Slanora) ]

k.m.p

2m

#k: A2
+ 3 Um0 (hor0 + e~ K, k)

k,m,p

, R2g> &2 ‘
+ gy @ (rs, + 50 = Ko a) (10)

In the above expression, because we are only interested in the slow electron always
observed in experiments we approximately set K, = 0. And by symmetry, we also have

2 N frp 0Pk = E|gp<q)|2q 0.

k.mp
Then from
3Q/sf = 8Q/of* = 8Q/3g = 8Q/8g* =0 (11)
we obtain
_ =B* cos[(mn/L)z] AT\ !
s 00 = A (oo + ) (120)
_ —B*sin{(mx/L)z] A2
Fon - (B) = [k2 + (ma/L)?]" (ﬁw;_o * 2m*) (126}
. / -
g.(q) = —C*(%‘?_L_))l et G+(ﬁw5p + %;ifi) ] (12¢)
__ aefsinb(@LN B2g*\ !
g-(g=-C (-—-—q ) e 9L G-(ﬁwsp + 2m*) . (124)

In addition, f,,(k} and g}(g) are expressed as the conjugate formulae of above
equations.
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We take the variation minimum of Q as the effective Hamiltonian of the electron—
phonon system, i.e.

H =min Q.

Inserting (124)-(124) into equation (10), we have

ﬁz 32 ﬁ2K2 }bez
= ——_ —f _
Hog ( et |e|Fz) + ( )

2m* Exy O
+ VIB(2) + V() + :;;(% —%) (13)

where V{P)(z) and V' {5(z) are the effective potentials respectively from Lo and somodes
effect. By direct calculations, they are derived as

N2
V{B)(Z)=-afzwm4Lu![ 3 cosz(@z)ﬂ"_m/ﬂ_

metge. AL C) (mm)? = (Lw)?
N . .fmx In(mz/Lu,)
* 2 sin'(°7°2) = g (14a)
and
Vi2) = —ahw oe¥i el Lu,

y U-wafz (1- e—h)((z.uf)zz pape + (Lusf;)z " xz) dx] (14b)

where we define the variable x = Lg and the dimensionless coupling constant of the
electron-LoO phonon interaction as

a = (m*e’MPu)(1/ea, - eq) (15)
and the polaron wavevectors i and ug), as
U =2m*wo/h uf, = 2m*ws, fh. (16)

3. The wavefunction and energy shifts

Since it is exceedingly complicated to get an exact solution of the eigenequation associ-
ated with Hq (13), a trial wavefunction should be found in our variational approach.
First, the effective Hamiltonian is rewritten as

Hg=H, 4+ Hyp+ H, + VB + VIE(2) (17)
in which

H, = —#2m*)3%/82% + |e|Fz (17a)

Hop = K3 2m* — he* e p ' (178)

Hy = (*/ex1)(A/p — 1/r). (17¢c)
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For a thin slab, the difference between A/p and 1/r can be made very small by choosing
an applicable value of A, so we treat i, as the perturbation and take

H@ = Hz + HZD + V}B)(Z) + V{S)(Z)

as the unperturbed Hamiltonian. According to equations (14a~b) and (17a-b), the
wavefunction of the electron motion referring to the unperturbed H, can be written as

|®(z, p)) = |@(2)) w(p)). (18)

Compared with the sub-band energy of the conduction electron, the effective interaction
potentials ¥V {®(z) and ¥ [¥(z) can be neglected due to their small values. So, the electron
can be approximately regarded as a quasi-particie moving in an infinite square-well
potential along the z direction and the wavefunction @(z) should be required to satisfy
the Schrédinger equation as

H, |p(z)) = E. |@(2)). (19)

In the presence of an external electric field the conduction electron is pushed against the
field direction and the charge distribution is concentrated near the well interface. Such
a physical situation can be well described by the trial wavefunction given by [11]:

{N(ﬁ) exp[—B(z/L + 1/2)] cos(nz/L) (Jz| < L/2)

7= (2> L/2)

(20}

where § is the variational parameter determined by minimizing the totai energy and
N( B} is the normalization constant easily obtained as

NY(B) =4p(B* + n*) [La* (1 — e )%, (21)
The corresponding eigenenergy is given by
= E\(U+ §°/a) + el FLU/26 + [B/(8° + 7] - heoth f) (22
where E, is the ground-state energy at zero field.

The term H,p {(17h) shows that the electron motion parallel to the xy plane is the
same as the 2p hydrogen-like atom problem. For the following eigenequation

Hapty(p)) = Exp | ¥(p))

we have the same solutions for the wavefunction and the energy eigenvalue as that of
the 2D hydrogen atom in [25]. For the ground state, they are

yo 1 (ﬂ) (_g& ) o W
"P(P _(2:_[)1,‘2 ag exP a()p 2D — szlﬁg

where ag = £.,8*/m*e.

(23)
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According to the perturbation technique [23], the expectation value of the per-
turbation term H, (17¢) referring to ®(z, p) should be set to zero, i.e.

Hy(3) = (D(z, p) | H, | @(z, p)) = 0.
So, the parameter A can be obtained from

o= (] tor oz [ 19l + 9 0d0) /[ e ey

Eventually, by solving the eigenequation of H,,
HD I(b(z: p)) = Elul [CI)(Z, p))

the totai energy of the impurity state in an infinite quantum well under an electric field
is obtained as

Elo! = (d’(Z, p)in + HED + Via)(z) + V{s](z)ltb(z! P))

=E,(1+‘8 )+]e|FL(ZB i B %cothﬁ)
2A2m*et
- Egnﬁz
where EB and E§ are the self-energies coming respectively from the expected values of
V{B(2) and V{5 (2):

E? =@V @)lez)

= —‘a’fleozLuj

+ EB + ES (25)

BB+ W (1 1 1
2 m%“(ﬁz—-a’z+ﬁ2 mia? + B2
1+ m)r? + g2 ) In(mazc/Lu,)
[(1 +m)*at + BI(1 ~ m) = + B/ (mm)* — (Lu,)?
El =(p@@)|VP (D) o(z)
N2 inh —-x
= —dﬂt!(ULoﬁ' llf{z Lu! ‘[] ((§;Z+;3 :_ x2
[(€o1 + £0) = (801 — E) e 172 P(x)+1
[(£x) + Eap) ~ (Ewy — £x2) €75} coshz(x/2)
(sinhx)e™ [(gq + £gp) + (€ — £g) e "7
(Lug- ) + 5 [(Ex1 + €a2) + (Exy — Eu2) €752
P(x) -1
% sinh?(x,fz))

(26a)

T

(268)
Here

P(x) =

BP ety s f) _, __sablctp) )

2sinh B BB+ '] Pl +p) At
The parameter 8 may be obtained from

dEn/af = 0. (28)

By inserting the two parameters A and £ simultaneously determined from equations (24)

27)
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Figure L. The energy shifts plotted against the Figure 2. The energy shifts plotted against the well
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impurity and the broken curve without any
impurity.

and (28) into equation (25), we get the minimized energy E . Then the field-induced
energy shift is obtained as

B? 1 B 2m*e*
AE=E, "5 +|e| L35+ g —teohf) -5 (A2—A3)+AEB+AE$

(29)
in which we set '
AEZ =E? - (EJ) AE? = E$ - (E2)o

to represent the effects on the energy shift due to the electron-bulk Lo phonon and the
electron-50 phonon interaction, respectively. In (29), Ay, (EB)y and (E3), are the
corresponding variables in the state with zero field; their expressions have been deduced
by us in [16].

4. Results and discussion

Taking the GaAs—Gag 7AlgsAs quantum well as an example, we compute the total
energy shift of a bound polaron induced by an external electric field perpendicular to
the well layers. Particularly, we also make calculations of the correction of the electron—
phonon effects on the Stark energy shift.

In the infinite-well approximation, we assume that the electron moves in an infinite
Qw under an external electric field and with a shallow impurity located at the centre of
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the well. For the slow electron we are interested in, we set K, = 0, and treat the electron—
phonon interaction by using the Hamiltonian operators deduced in [22].

Figure 1 describes the variation of the energy shifts with the field strength. It shows
us that the energy shift of a bound polaron is smaller than that of the conduction electron
in an infinite well without any impurity. This implies that the attractive action between
the ionized donor and the electron will decrease the effect of the external electric field.
In [11}, by using the infinite-well approximation, the Stark energy shift without any
impurity was obtained as

AE = E | (B*/x*) + |e|FL[1/28 + B/(B? + n¥) — % coth §]. (30a)

In this paper, neglecting the small terms proportional to (Ag8)? and the small change of
self-energies, we get the energy shift with on-centre impurity approximately as

AE = E; ﬁ2 + ]eIFL(Zﬁ ,32 icothﬁ) 2}? W =A%)
1 at-pe 1
+ Aﬁ[El L+ |""1FL( 25 (;2 T fz)z 2(sinb B)’)] (305)

where Af is the change of variational parameter in the wavefunction, which is brought
out due to the action of the doped impurity and AS < 1. With a comparison between
the two equations above, it is concluded that the correction to the energy shift due to
the presence of the on-centre impurity is composed of two parts: the correction in the z
direction (the fourth term in (305)) and the energy shift in the xy plane (the third term
in (30b)). Our calculations illustrate that both parts decrease the total shift, and the
energy shift in the xy plane plays a more important role in the impurity correction. For
instance, for L = 100 A (N = 18) and F = 200 kV cm™!, it is 11.6 times larger than the
impurity correction in the z direction.

The dependence of the energy shift on the well thickness is depicted in figure 2. It is
obvious that the energy shifts will rapidly become large with the thickness increasing,
At the same time, the influence of ar on-centre impurity on the energy shift will also
become stronger.

The effect of the electron-phonon interaction on the total energy shift contains two
parts, AE2 and AES, which are brought out respectively by L0 and so phonon con-
tributions. As shown in figures 3 and 4, they give significant corrections to the Stark
energy shift, individually. But their influences on the shifts are entirely opposed, i.e. the
total energy shift will be enhanced by the sO mode effect (AES < 0) and weakened by
the LO mode effect (AER > 0). In the presence of an external electric field, the electron
is pushed against the direction of the field and close to the interface of the Qw. As a
result, the electron-s0 phonon interaction must be enhanced and the so self-energy will
be lower; the eleciron-bulk Lo phonon interaction must be weakened and the 1O self-
energy will be higher. So, we obtain AES <0and AER > 0, as described in figures 3
and 4. In these figures, we can also see that all the corrections will get rather large when
the field becomes strong.

The sum of the two mode corrections, AEE + AE?, is plotted in figure 5, which
illustrates that the phonon effect, mainly depending on Lo mode contribution, will
decrease the Stark shift. Owing to the opposite influence of so mode effect, the LO mode
effect is weakened. In our calculation, the total correction is much smaller than the Lo
mode correction obtained in [21].
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Figure 5. The total correction of phonon effect to
the Stark shift, (AE® + AE$), versus the field
strength; £ =100 A (N =18) for curve | and
L =135 A (N = 24) for curve IT.

For the electron-phonon system without any impurity, the total energy and its Stark
shift can be easily deduced from equations (25) and (29) with A— 0

g 1 B
Em=El(l+; +|9|FL(E+m_%COthﬁ)+E?+EE (25a)
. s
AE—E[E"E"]'lelFL §E+m—%wth‘3)+AEs + AEZ. (29a)
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(Rg is the effective Bohr radius of the shaliow (Ry is the effective Bohr radius of the shallow
donor in GaAs.) donar in GaAs,)

For L = 100 A (N = 18) and without any impurity, the corrections of phonon effects are
calculated by means of the same variational method. The results are plotted as the
broken curvesin figures 3 and 4. Comparing the full and broken curves in the two figures,
it is seen that whether the correction is positive (AE B} or negative (AE$), the presence
of an on-centre impurity will decrease the corrections from the phonon effects,

Infigures6and 7, with the effective Bohr radius ( Rg) as the unit of the well thickness,
the variations of the phonon contributions with well thickness are described. No matter
how large the field strength is, the phonon effects on the energy shift are very weak when
Rp is much larger than the thickness (L/Ry <€ 1). With increasing well thickness, the
phonon cffects become stronger and stronger. When the effective Bohr radius of the
donor approaches the well thickness (L/Rg < 1), the changes of the absolute values of
the phonon self-energy shifts will be very smooth. And when Ry is relatively smaller
than the well thickness (L/Rg > 1), the increase of phonon self-energy shifts becomes
very drastic. The stronger the external field is, the more drastic will be the change of the
phononself-energy shift. Even though the Lo and s0 modes produce opposite influences
on the Stark shift, both of them have the same characteristics in the change of their
contributions with well thickness.
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