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Abstract. With both IongiNdinal optical (Lo) and surface optical (so) modes included, the 
influence ofelectron-phonon interactions on the quantum confined Stark effect in quantum 
wells is investigated by means of the variational technique. For an infinite GaAs-GaAIAs 
quantum wellwith ashallow donor locatedat itscentre andsubjected to anextemal electric 
field, theenergyshiftsof aconductionelectron arecalculatedapproximately. It isfound that 
the presence of an ionized impurity decreases the energy shift. The LO mode and so mode 
effectwillgivesignifircantoorrecdonstotheStarkener~sh~individu~~and lheirinfluences 
on the shift are just opposed. 

1. Introduction 

Recently, the study of the electronic and optical properties of the quantum-well (aw) 
structure in the presence of an electric field has attracted a great deal of interest [l-71. 

It is well known that, for aw and other confined structures subjected to an electric 
field perpendicular to the well layers, the quantum confined Stark effect (QCSE) det- 
ermines the behaviour of the electron absorption by shifting the optical absorption 
peaks. The electron absorptive effect has already been applied to make small, high- 
speed optical modulators, and optical switching and signal processing devices [SI. So, 
studies of these areas are important from both a fundamental and a practical point of 
view. 

Most theoretical work has been confined to the calculations of the ground state in 
which the possibility of tunnelling out of the we11 was neglected and the infinite-well 
approximation was employed. In principle, the linear combinations of two dependent 
Airy functions are an exact solution of the eigenstates in an infinite QW under a constant 
electric field [3]. However, these solutions are too complicated to use in a real problem. 
So sometimes, other approximation methods based on the Green function [9],  per- 
turbational treatment [lo] and variational technique [ll] are used. 

t This project was supported by the National Science Foundation of China. 
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In the calculations for studying QCsE in the infinite-well approximation, the vari- 
ational approach not only has the advantage of providing analytical expressions for the 
eigenstate energies and the field-dependent trial wavefunctions but gives numerical 
results with reasonable accuracy. It was found that its results agreed very well with that 
of other methods over a wide range of moderate electric fields 1121. 

On the other hand, with the development of the epitaxial growth technique and the 
applications of doped superlattice. structures, in which electronic transport properties 
were shown to be significant, a lot of theoretical papers have discussed the binding 
energy and wavefunction of a hydrogenic donor in polar crystal slabs and semiconductor 
QW [13-16]. Recently, the presence of ionized impurities in the QW region has been 
suggested as one possible mechanism to explain the strong broadening of the excitonic 
peaks in the electro-absorption spectra with fields [17]. It has thus become more impor- 
tant to understand the role of impurities in semiconductor QW and other confined 
structures. 

The early theoretical studies concluded that the electron-optical phonon coupling 
would play an important role in determining the properties of a polaron in QW. Both in 
3D and in ZD systems, the virtual coupling of a quasi-free electron with bulk longitudinal 
optical (LO) phonons has been investigated [18-20]. However, to the best of our knowl- 
edge, only more recently was the electron-Lo phonon interaction taken into account in 
the calculation of Stark energy shifts in an infinite QW [21], in which the LO modes effect 
was approximately described by the operators in the bulk not in the slab. 

The first deduction of the Hamiltonian operators of the Frohlich polaron in a polar 
crystal slab with both the electron-Lo phonon and the electron-surface optical (so) 
phonon interaction included was made by Licari and Evrard [2]. In  the zero-tem- 
perature limit, we and our collaborators [I61 investigated the influence of the so modes 
effect and concluded that, for a thin polar crystal slab, the electronso phonon inter- 
action would make an obviouscontribution to the optical propertiesof a bound polaron. 

In this paper, we report a study of the effect of an external electric field on the 
electronic bound states associated with an infinite quantum well in which there is a 
shallow donor located at its centre (on-centre impurity). Taking GaAs-GaAlAs as an 
example, we calculate the energy shifts by means of the variational technique. With the 
consideration of the electron interaction with both LO and SO modes, in particular, the 
electron-phonon effect on QCSE is discussed in detail 

It is found that the presence of ionized impurities will decrease the energy shift and 
for such a correction the energy change in the xy plane will play an important role. 
The effects of LO and SO phonons will give significant corrections to the energy shifts 
individually. But becauseof the oppositeinfluence ofsomode effect, the total correction 
attributed mainly to LO mode effect is decreased. 

2. The effective Hamiltonian 

Let us consider an electron, with charge e and effective mass m*, in a quantum well of 
width L and in the presence of an external electric field Falong the L direction, i.e. 
perpendicular to the well layers. The origin of distance is chosen at the centre of the 
well, the space for I z I < L/2 is filled with polar crystal 1 (GaAs) and for I z I 5. L/2 with 
polar crystal 2 (GaAlAs). The shallow doped impurity is located at the centre of the 
well (z = 0). We assume that the effective-mass approximation is valid and electron 
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tunnelling can be neglected. Therefore, in the infinite-well approximation, the Ham- 
iltonian of this problem is written as 

H = H ,  + Hph +Hint. 

He = -(fi2/2m*)a2/az2 + h2K:/2m* - e 2 / c m l r +  1elF.z 

(1) 

(2) 

The first term, the Hamiltonian of the shallow donor, is given by 

where K p  and p are the wavevector and the position vector of the electron in the xy 
plane, respectively, and m* is the band mass of the electron. In (2) -2/Em1r is the 
Coulomb potential to describe the interaction between the electron and the ionized 
impurity, in which E ,  is the optical dielectric constant of crystals and r = (p2  + z’)‘~. 

In order to solve the energy eigenequation of U,, we introduce the plane Coulomb 
potential with the parameter I [23]. Then 

where the value of I will be determined by the perturbation theory. 
The second term in (1) represents the phonon-field Hamiltonian 

Hso = fiWspbp+ (q)bp(q) ( 4 4  
P.P 

where aA,,(k) (am,,@)) is the creation (annihilation) operator for the LO phonon with 
frequency wmandkis the two-dimensional projectionon thexyplaneofthewavevector, 
b; (q) (b,(q)) is the corresponding operator for the so phonon with frequency asp and 
wavevector q. The phonon modes are specified by subscriptsp and m. The parity index 
p ,  taking the value + and -, refers to the mirror symmetry with respect to the plane 
z = 0. The index m is the quantum number denoting the z component of the LO phonon 
wavevector. For even parity (p takes +) m is odd, and for odd parity (p takes -) m is 
even. The phonon frequencies can be expressed in terms of the transverse optical (TO) 
phonon frequency wTo by 

4 0  = ( E O L / € m , ) 4 0  (5a) 

where E~ is the static dielectric constant. 
In equation (l), Hht = HeL0 + Heso, which represents the sum of the interaction 

Hamiltonian operators respectively from LO and so modes. According to the results 
deduced in [22], they are directly taken as 

sin[(mn/L)r] 

m=2,4.  ... 
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C* = i[(kez/A)hom(e0, - E = ~ ) ] ' D  

G+ = 
cosh(qz)/cosh(q.L/Z) 

(&,I + 8-2) - ( E , ~  - eE2)  e-qL 

In the above equations, A and V are the surface area and the volume of crystal 1 
respectively. We take N as the well thickness in the unit of the lattice spacing constant 
a, namely, Na = L. According to the Brillouin-zone boundary limitationmn/l =z n/2a, 
thequantumnumbermofzcomponentcanbeanyintegerwithintherangel S m =z N/Z. 

For the sake of convenience, we first cany out the canonical transformations devel- 
oped by Lee et ai 1241 to H(l) with 

and 

+ I b ; ( d g p ( d  - bP(q)g; (491) (86) 
0.P 

wherefm,,,f;,F, gp andg; are the variational parameters determined by minimizing the 
total energy subsequently. After some straightfonvard algebra, we directly get the 
transformed Hamiltonian 

%e= U,'U; lHUIU, .  (9)  

In the low-temperature limit, few phonons will be excited and then no real phonons 



In addition, f &(k) and g; (4) are expressed as the conjugate formulae of above 
equations. 
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We take the variation minimum of Q as the effective Hamiltonian of the electron- 
phonon system, i.e. 

H,, = min Q. 

Inserting (12n)-(12d) into equation (lo), we have 

+ V$)(Z) + vp’(z) + - - - - 
E-1 ( A  P r l) 

where VIB)(z) and V[’)(z) are the effective potentials respectivelyfromLoandsomodes 
effect. By direct calculations, they are derived as 

(mn)z - (Lu# 1 N / 2  

+ E s i n z ( y z )  
m-2.4. ... 

where we define the variable x = Lq and the dimensionless coupling constant of the 
electron-Lo phonon interaction as 

(Y = (m*e2/fi2ul)(l/E-, - l/ea,) 

U: = 2m*wm/h U& = 2m*wSp/fi. (16) 

(15) 
and the polaron wavevectors ul and usp as 

3. The wavefunction and energy s h i  

Since it is exceedingly complicated to get an exact solution of the eigenequation associ- 
ated with He, (13), a trial wavefunction should be found in our variational approach. 
First, the effective Hamiltonian is rewritten as 

Herr = H ,  + H2D + H I  + Vi8’(z) + Vfs)(z) (17) 
in which 
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For a thin slab, the difference between A l p  and l/r can be made very small by choosing 
an applicable value of A ,  so we treat H i  as the perturbation and take 

H ,  = H ,  + H,, + V B ) ( Z )  + Vp'(2) 

as the unperturbed Hamiltonian. According to equations (14a-b) and (17a-b), the 
wavefunction of the electron motion referring to the unperturbed H o  can be written as 

1 %  P ) )  = IT(Z))IY(P)). (18) 

Compared with the sub-bandenergy of the conduction electron, the effective interaction 
potentials VIB)(z) and Vfs)(z) can beoeglecteddueto theirsmallvalues. So, theelectron 
can be approximately regarded as a quasi-particle moving in an infinite square-well 
potential along the z direction and the wavefunction &)should be required to satisfy 
the Schrodinger equation as 

H ,  l d z ) )  = E, I&')). (19) 

In the presence of an external electric field the conduction electron is pushed against the 
field direction and the charge distribution is concentrated near the well interface. Such 
a physical situation can be well described by the trial wavefunction given by [ll]: 

where p is the variational parameter determined by minimizing the total energy and 
N ( P )  is the normalization constant easily obtained as 

P ( p )  = 4p(pz + nz) [Ln2(1 -e-*# )I-'. (21) 

The corresponding eigenenergy is given by 

E ,  = Ei( l  + pz/nz) + lelFL{1/2p + [ p / ( p 2  + n2)] - $cothp} (22) 

where El is the ground-state energy at zero field. 

same as the ZD hydrogen-like atom problem. For the following eigenequation 
The term HZD (17b) shows that the electron motion parallel to the xy plane is the 

HZD IY(P)) = EZD IY(P)) 

we have the same solutions for the wavefunction and the energy eigenvalue as that of 
the ZD hydrogen atom in [E]. For the ground state, they are 

where a. = E,,h2/m*e. 
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According to the perturbation technique [U], the expectation value of the per- 
turbation term HI (17c) referring to @@, p) should be set to zero, i.e. 

So, the parameter h can be obtained from 
~l (~)=(@(Z,p) IH, l@(z ,P) )=O.  

Eventually, by solving the eigenequation of Ho 

the total energy of the impurity state in an infinite quantum well under an electric field 
is obtained as 

Ho I Y z ,  PI) = Em, l W z *  PI)  

Et,, =(@(z ,p ) lHz  + H 2 D  + vB’(z) + v\s’(z)I@(z,p))  

where E l  and E: are the self-energies coming respectively from the expected values of 
VIB’(z) and Vfs ) ( r ) :  

E! = ( & ) l V i B ’ ( Z ) l Q 4 d )  

Here 

(27) 
sinh(x - /3) sinh(x + l). 

( x  - p ) [ ( x  - p)2 + x’] + ( x  + p ) [ ( x  + /3)’ t 
P ( x )  = 

The parameter /3 may be obtained from 

aElo,/ap = 0. (28) 
By inserting the two parameters1 and p simultaneously determined from equations (24) 
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Field I k V  cm-') L (AI 
Figure 1. The energy shifts plotted against the 
electric field for a conduction electron in an infi- 
nile GaAs quantum well, N = 18 (L = 100 A). 
The full curve is the case with an on-centre 
impurity and the broken curve without any 

Figure2.Thltenergyshiftsplotted against the well 
thickness fa different electric fields: cuwe I ,  
F = 100 kV cm-': cuwe 11, F = 200 kV cm-'. 

impurity. \ 

and (28) into equation (25). we get the minimized energy E,,,. Then the field-induced 
energy shift is obtained as 

in which we set 

A€! = E,B - (€!)a AE: = E: - (E:),, 
to represent the effects on the energy shift due to the electron-bulk LO phonon and the 
electron-so phonon interaction, respectively. In (29), do, (E!),, and (E: ) , ,  are the 
corresponding variables in the state with zero field; their expressions have been deduced 
by us in [16]. 

4. Results and discussion 

Taking the GaAs-G~,,AI,,,As quantum well as an example, we compute the total 
energy shift of a bound polaron induced by an external electric field perpendicular to 
the well layers. Particularly, we also make calculations of the correction of the electron- 
phonon effects on the Stark energy shift. 

In the infinite-well approximation, we assume that the electron moves in an infinite 
Qw under an external electric field and with a shallow impurity located at the centre of 
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the well. For theslowelectronweareinterestedin,wesetK, = 0,andtreat theelectron- 
phonon interaction by using the Hamiltonian operators deduced in [22]. 

Figure 1 describes the variation of the energy shifts with the field strength. It shows 
us that the energy shift of a bound polaron is smaller than that of the conduction electron 
in an infinite well without any impurity. This implies that the attractive action between 
the ionized donor and the electron will decrease the effect of the external electric field. 
In [ll], by using the infinite-well approximation, the Stark energy shift without any 
impurity was obtained as 

Y Li and S Gu 

A . E = E l ( ~ a / ~ z ) + ~ e ~ F L [ 1 / 2 ~ + ~ / ( ~ z  +n2)  -4cothPI. (304 

In this paper, neglecting the small terms proportional to (A.P)2 and the small change of 
self-energies, we get the energy shift with on-centre impurity approximately as 

where A b  is the change of variational parameter in the wavefunction, which is brought 
out due to the action of the doped impurity and AP a 1. With a comparison between 
the two equations above, it is concluded that the correction to the energy shift due to 
the presence of the on-centre impurity is composed of two parts: the correction in the z 
direction (the fourth term in (30b)) and the energy shift in the xy plane (the third term 
in (306)). Our calculations illustrate that both parts decrease the total shift, and the 
energy shift in thexy plane plays a more important role in the impurity correction. For 
instance, for L = 100 8, (N = 18) and F =  200 kV cm-’, it is 11.6 times larger than the 
impurity correction in the z direction. 

The dependence of the energy shift on the well thickness is depicted in figure 2. It is 
obvious that the energy shifts will rapidly become large with the thickness increasing. 
At the same time, the influence of an on-centre impurity on the energy shift will also 
become stronger. 

The effect of the electron-phonon interaction on the total energy shift contains two 
parts, AEF and AE;, which are brought out respectively by LO and SO phonon con- 
tributions. As shown in figures 3 and 4, they give significant corrections to the Stark 
energyshift, individually. But their influenceson the shiftsareentirelyopposed. i.e. the 
total energy shift will be enhanced by the so mode effect (A€: < 0) and weakened by 
the LO mode effect (AEF > 0). In the presence of an external electric field, the electron 
is pushed against the direction of the field and close to the interface of the QW. As a 
result, the electron-so phonon interaction must be enhanced and the so self-energy will 
be lower; the electron-bulk LO phonon interaction must be weakened and the LO self- 
energy will be higher. So, we obtain A@ < 0 and AEF > 0, as described in figures 3 
and 4. In these figures, we can also see that all the corrections will get rather large when 
the field becomes strong. 

The sum of the two mode corrections, A@ + AE;, is plotted in figure 5, which 
illustrates that the phonon effect, mainly depending on LO mode contribution, will 
decrease the Stark shift. Owing to the opposite influence of so mode effect, the LO mode 
effect is weakened. In our calculation, the total correction is much smaller than the LO 
mode correction obtained in [21]. 
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Field IkV am-'] Field I kV u " ' 1  

Figure 3. The correction of the so modes con- 
tribution to the energy shift versus the electric 
field. The full curves are the results in an infinite 
QW with on-centre impurity: curve I, L = 100 A 
( N =  18); curve 11, L = 135 A (N = 24). The 
brokencurve is the result in the case without any 
impurityandL= 100A(N= 18). 

Figure 4. The correction of the bulk LO modes 
contribution to the energyshift versus theelectric 
field. The curves are the same as in figure 3. 

Field IkV cm-'l 

F w 5 . T h e  totalcorrectionofphononeffect to 
the Stark shift, (AE!  + AE,S), versus the field 
strength; L = l00A (N= 18) for curve I and 
L = 135 A (N = 24) for curve 11. 

For the electron-phonon system without any impurity, the total energy and its Stark 
shift can be easily deduced from equations (25) and (29) with A -P 0 
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L / R ,  L / R ,  

Figure6. Varialion ofso modesmrrection to the 
energy shifts with the well thickness: for cuwe I, 
F= 15OkVcm-‘;forcurveII.F= 3M)kVcm-’. 
(RB is the effective Bohr radius of the shallow 
donor in GaAs.) 

Figure7. Variation of Lomodescorrection to the 
energy shifts with the well thickness: for C U N ~  I ,  
F =  lSOkVcm-’;forcurveII,F= 3OkVcm-’.  
( R ,  is the effective Bohr radius of the shallow 
donor in GaAs.) 

For L = 100 A (N = 18) and without any impurity, thecorrectionsof phonon effectsare 
calculated by means of the same variational method. The results are plotted as the 
brokencurvesin figures3 and4. Comparingthefull andbrokencurvesin the twofigures, 
it is seen that whether the correction is positive ( A E : )  or negative (AET), the presence 
of an on-centre impurity will decrease the corrections from the phonon effects. 

Infigures6and7,with theeffectiveBohrradius(R,)astheunitofthewell thickness, 
the variations of the phonon contributions with well thickness are described. No matter 
how large the field strength is, the phonon effectson the energyshift are very weak when 
RB is much larger than the thickness (L /Rs  1). With increasing well thickness, the 
phonon effects become stronger and stronger. When the effective Bohr radius of the 
donor approachcs the well thickness (LIR, < l), the changes of the absolute values of 
the phonon self-energy shifts will be very smooth. And when RB is relatively smaller 
than the wrell thickness ( L / R B  > l), the increase of phonon self-energy shifts becomes 
very drastic. The stronger the external field is, the more drastic will be the change of the 
phonon self-energyshift. Even though theroandsomodesproduceopposite influences 
on the Stark shift. both of them have the same characteristics in the change of their 
contributions with well thickness. 
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